Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 200: 116152, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38364641

RESUMO

Green tides occurrence has increased in coral reefs, yet few reference values have been documented to support bloom management in these ecosystems. Here, we took advantage of recent Ulva green tides that occurred in New Caledonia to (i) identify the elements limiting the growth of Ulva spp. during these blooms; and (ii) validate the use of isotopic markers for identifying sources of nutrients that generated blooms. N/P ratios highlighted a stronger limitation of algae by phosphorus than by nitrogen on sites under oceanic influence, while the proportions of N and P were optimal for algal growth at sites where green tides occurred. Macroalgae highly exposed to sewage water was characterized by higher δ15N than macroalgae collected in areas exposed to synthetic inorganic fertilizers. From these results, we established a new set of threshold values for using δ15N in Ulva species as an indicator of nitrogen source type in coral reefs.


Assuntos
Alga Marinha , Ulva , Ecossistema , Recifes de Corais , Valores de Referência , Nitrogênio , Eutrofização
2.
Toxins (Basel) ; 15(11)2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37999505

RESUMO

Algal toxins pose a serious threat to human and coastal ecosystem health, even if their potential impacts are poorly documented in New Caledonia (NC). In this survey, bivalves and seawater (concentrated through passive samplers) from bays surrounding Noumea, NC, collected during the warm and cold seasons were analyzed for algal toxins using a multi-toxin screening approach. Several groups of marine microalgal toxins were detected for the first time in NC. Okadaic acid (OA), azaspiracid-2 (AZA2), pectenotoxin-2 (PTX2), pinnatoxin-G (PnTX-G), and homo-yessotoxin (homo-YTX) were detected in seawater at higher levels during the summer. A more diversified toxin profile was found in shellfish with brevetoxin-3 (BTX3), gymnodimine-A (GYM-A), and 13-desmethyl spirolide-C (SPX1), being confirmed in addition to the five toxin groups also found in seawater. Diarrhetic and neurotoxic toxins did not exceed regulatory limits, but PnTX-G was present at up to the limit of the threshold recommended by the French Food Safety Authority (ANSES, 23 µg kg-1). In the present study, internationally regulated toxins of the AZA-, BTX-, and OA-groups by the Codex Alimentarius were detected in addition to five emerging toxin groups, indicating that algal toxins pose a potential risk for the consumers in NC or shellfish export.


Assuntos
Ecossistema , Frutos do Mar , Humanos , Estações do Ano , Nova Caledônia , Frutos do Mar/análise , Ácido Okadáico
3.
Biology (Basel) ; 12(9)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37759633

RESUMO

Dinoflagellates are important primary producers known to form Harmful Algae Blooms (HABs). In water, nutrient availability, pH, salinity and anthropogenic contamination constitute chemical stressors for them. The emergence of OMICs approaches propelled our understanding of dinoflagellates' responses to stressors. However, in dinoflagellates, these approaches are still biased, as transcriptomic approaches are largely conducted compared to proteomic and metabolomic approaches. Furthermore, integrated OMICs approaches are just emerging. Here, we report recent contributions of the different OMICs approaches to the investigation of dinoflagellates' responses to chemical stressors and discuss the current challenges we need to face to push studies further despite the lack of genomic resources available for dinoflagellates.

4.
Environ Microbiol ; 25(12): 3087-3103, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37671646

RESUMO

Intertidal microphytobenthic (MPB) biofilms are key sites for coastal primary production, predominantly by pennate diatoms exhibiting photo-regulation via non-photochemical quenching (NPQ) and vertical migration. Movement is the main photo-regulation mechanism of motile (epipelic) diatoms and because they can move from light, they show low-light acclimation features such as low NPQ levels, as compared to non-motile (epipsammic) forms. However, most comparisons of MPB species-specific photo-regulation have used low light acclimated monocultures, not mimicking environmental conditions. Here we used variable chlorophyll fluorescence imaging, fluorescent labelling in sediment cores and scanning electron microscopy to compare the movement and NPQ responses to light of four epipelic diatom species from a natural MPB biofilm. The diatoms exhibited different species-specific photo-regulation features and a large NPQ range, exceeding that reported for epipsammic diatoms. This could allow epipelic species to coexist in compacted light niches of MPB communities. We show that diatom cell orientation within MPB can be modulated by light, where diatoms oriented themselves more perpendicular to the sediment surface under high light vs. more parallel under low light, demonstrating behavioural, photo-regulatory response by varying their light absorption cross-section. This highlights the importance of considering species-specific responses and understanding cell orientation and photo-behaviour in MPB research.


Assuntos
Diatomáceas , Diatomáceas/metabolismo , Clorofila/metabolismo , Aclimatação , Especificidade da Espécie , Fotossíntese/fisiologia
5.
Ecol Evol ; 12(11): e9437, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36407902

RESUMO

In mudflats, interactions and transfers of nutrients and secondary metabolites may drive ecosystems and biodiversity. Foraminifera have complex trophic strategies as they often rely on bacteria and eukaryotes or on potential symbionts for carbon and nitrogen resources. The capacity of these protists to use a wide range of adaptive mechanisms requires clarifying the relationships between them and their microbial associates. Here, we investigate the interactions of three foraminiferal species with nearby organisms in situ, by coupling molecular (cloning/Sanger and high-throughput sequencing) and direct counting and morphological identification with microscopy. This coupling allows the identification of the organisms found in or around three foraminiferal species through molecular tools combined with a direct counting of foraminifera and diatoms present in situ through microscopy methods. Depending on foraminiferal species, and in addition to diatom biomass, diatom frustule shape, size and species are key factors driving the abundance and diversity of foraminifera in mudflat habitats. Three different trophic strategies were deduced for the foraminifera investigated in this study: Ammonia sp. T6 has an opportunistic strategy and is feeding on bacteria, nematoda, fungi, and diatoms when abundant; Elphidium oceanense is feeding mainly on diatoms, mixed with other preys when they are less abundant; and Haynesina germanica is feeding almost solely on medium-large pennate diatoms. Although there are limitations due to the lack of species coverage in DNA sequence databases and to the difficulty to compare morphological and molecular data, this study highlights the relevance of combining molecular with morphological tools to study trophic interactions and microbiome communities of protists at the single-cell scale.

6.
Appl Opt ; 61(33): 9807-9816, 2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36606810

RESUMO

Digital holographic microscopy is an imaging process that encodes the 3D information of a sample into a single 2D hologram. The holographic reconstruction that decodes the hologram is conventionally based on the diffraction formula and involves various iterative steps in order to recover the lost phase information of the hologram. In the past few years, the deep-learning-based model has shown great potential to perform holographic reconstruction directly on a single hologram. However, preparing a large and high-quality dataset to train the models remains a challenge, especially when the holographic reconstruction images that serve as ground truth are difficult to obtain and can have a deteriorated quality due to various interferences of the imaging device. A cycle generative adversarial network is first trained with unpaired brightfield microscope images to restore the visual quality of the holographic reconstructions. The enhanced holographic reconstructions then serve as ground truth for the supervised learning of a U-Net that performs the holographic reconstruction on a single hologram. The proposed method was evaluated on plankton images and could also be applied to achieve super-resolution or colorization of the holographic reconstructions.

7.
ISME J ; 16(3): 822-832, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34635793

RESUMO

Foraminifera are ubiquitously distributed in marine habitats, playing a major role in marine sediment carbon sequestration and the nitrogen cycle. They exhibit a wide diversity of feeding and behavioural strategies (heterotrophy, autotrophy and mixotrophy), including species with the ability of sequestering intact functional chloroplasts from their microalgal food source (kleptoplastidy), resulting in a mixotrophic lifestyle. The mechanisms by which kleptoplasts are integrated and kept functional inside foraminiferal cytosol are poorly known. In our study, we investigated relationships between feeding strategies, kleptoplast spatial distribution and photosynthetic functionality in two shallow-water benthic foraminifera (Haynesina germanica and Elphidium williamsoni), both species feeding on benthic diatoms. We used a combination of observations of foraminiferal feeding behaviour, test morphology, cytological TEM-based observations and HPLC pigment analysis, with non-destructive, single-cell level imaging of kleptoplast spatial distribution and PSII quantum efficiency. The two species showed different feeding strategies, with H. germanica removing diatom content at the foraminifer's apertural region and E. williamsoni on the dorsal site. All E. williamsoni parameters showed that this species has higher autotrophic capacity albeit both feeding on benthic diatoms. This might represent two different stages in the evolutionary process of establishing a permanent symbiotic relationship, or may reflect different trophic strategies.


Assuntos
Diatomáceas , Foraminíferos , Monitoramento Ambiental/métodos , Sedimentos Geológicos , Processos Heterotróficos , Fotossíntese
8.
Mar Drugs ; 19(10)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34677448

RESUMO

The demand for natural products isolated from microalgae has increased over the last decade and has drawn the attention from the food, cosmetic and nutraceutical industries. Among these natural products, the demand for natural antioxidants as an alternative to synthetic antioxidants has increased. In addition, microalgae combine several advantages for the development of biotechnological applications: high biodiversity, photosynthetic yield, growth, productivity and a metabolic plasticity that can be orientated using culture conditions. Regarding the wide diversity of antioxidant compounds and mode of action combined with the diversity of reactive oxygen species (ROS), this review covers a brief presentation of antioxidant molecules with their role and mode of action, to summarize and evaluate common and recent assays used to assess antioxidant activity of microalgae. The aim is to improve our ability to choose the right assay to assess microalgae antioxidant activity regarding the antioxidant molecules studied.


Assuntos
Antioxidantes/farmacologia , Microalgas/química , Animais , Antioxidantes/química , Organismos Aquáticos , Relação Estrutura-Atividade
9.
J Biotechnol ; 325: 312-324, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-33038474

RESUMO

A Tetraselmis sp. was selected for its antioxidant activity owing to its high lipid peroxidation inhibition capacity. With the aim to monitor culture conditions to improve antioxidant activity, effects of CO2-induced acidification on Tetraselmis growth, elemental composition, photosynthetic parameters and antioxidant activity were determined. Two pH values were tested (6.5 and 8.5) in batch and continuous cultures in photobioreactors. Acidification enhanced cell growth under both culture methods. However, the microalgae physiological state was healthier at pH 8.5 than at pH 6.5. Indeed, photosynthetic parameters measured with pulse amplitude modulated (PAM) fluorometry showed a decrease in the photosystem II (PSII) efficiency at pH 6.5 in batch culture. Yet, with the exception of the PSII recovering capacity, photosynthetic parameters were similar in continuous culture at both pH. These results suggest that lowering pH through CO2-induced acidification may induce a lower conversion of light to chemical energy especially when coupled with N-limitation and/or under un-balanced culture conditions. The highest antioxidant activity was measured in continuous culture at pH 6.5 with an IC50 of 3.44 ±â€¯0.6 µg mL-1, which is close to the IC50 of reference compounds (trolox and α-tocopherol). In addition, the principal component analysis revealed a strong link between the antioxidant activity and the culture method, the photophysiological state and the nitrogen cell quota and C:N ratio of Tetraselmis sp.. These results highlight Tetraselmis sp. as a species of interest for natural antioxidant production and the potential of PAM fluorometry to monitor culture for production of biomass with a high antioxidant activity.


Assuntos
Antioxidantes , Dióxido de Carbono , Biomassa , Concentração de Íons de Hidrogênio , Fotossíntese
10.
Front Microbiol ; 11: 604979, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33343548

RESUMO

Nitrogen availability often limits biological productivity in marine systems, where inorganic nitrogen, such as ammonium is assimilated into the food web by bacteria and photoautotrophic eukaryotes. Recently, ammonium assimilation was observed in kleptoplast-containing protists of the phylum foraminifera, possibly via the glutamine synthetase/glutamate synthase (GS/GOGAT) assimilation pathway imported with the kleptoplasts. However, it is not known if the ubiquitous and diverse heterotrophic protists have an innate ability for ammonium assimilation. Using stable isotope incubations (15N-ammonium and 13C-bicarbonate) and combining transmission electron microscopy (TEM) with quantitative nanoscale secondary ion mass spectrometry (NanoSIMS) imaging, we investigated the uptake and assimilation of dissolved inorganic ammonium by two heterotrophic foraminifera; a non-kleptoplastic benthic species, Ammonia sp., and a planktonic species, Globigerina bulloides. These species are heterotrophic and not capable of photosynthesis. Accordingly, they did not assimilate 13C-bicarbonate. However, both species assimilated dissolved 15N-ammonium and incorporated it into organelles of direct importance for ontogenetic growth and development of the cell. These observations demonstrate that at least some heterotrophic protists have an innate cellular mechanism for inorganic ammonium assimilation, highlighting a newly discovered pathway for dissolved inorganic nitrogen (DIN) assimilation within the marine microbial loop.

11.
MethodsX ; 7: 101037, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32923376

RESUMO

We describe in the present study a quick and reliable method based on chlorophyll a fluorescence to assess putative algicidal effect of different microalgal extracts. We couple microalgal production under chemostat cultivation mode to continuously produce a given microalgae species (e.g. Dunaliella salina in this study) at a stable physiological state to ease comparison between extracts tested; with a non-destructive method based on chlorophyll a fluorescence. Pulse amplitude modulated (PAM) fluorometry was used to assess over time the effect of different microalgal crude extracts on the efficiency of the photosystem II (PSII) of a tested microalgae (Dunaliella salina). • Microalgal production at stationary phase in stirred closed photobioreactor (PBR) operating in continuous have stable photophysiological parameters, which is a prerequisite to compare the impact of different algicidal compounds. • The combination of both methods, allows to quickly assess the algicidal effect of diverse microalgal (crude) extracts on the PSII efficiency of a tested microalgae. • The method may be used to identify and isolate algicidal molecules affecting algal PSII using a bio-guided isolation protocol.

12.
Mar Drugs ; 18(9)2020 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-32872415

RESUMO

Nephroselmis sp. was previously identified as a species of interest for its antioxidant properties owing to its high carotenoid content. In addition, nitrogen availability can impact biomass and specific metabolites' production of microalgae. To optimize parameters of antioxidant production, Nephroselmis sp. was cultivated in batch and continuous culture conditions in stirred closed photobioreactors under different nitrogen conditions (N-repletion, N-limitation, and N-starvation). The aim was to determine the influence of nitrogen availability on the peroxyl radical scavenging activity (oxygen radical absorbance capacity (ORAC) assay) and carotenoid content of Nephroselmis sp. Pigment analysis revealed a specific and unusual photosynthetic system with siphonaxanthin-type light harvesting complexes found in primitive green algae, but also high lutein content and xanthophyll cycle pigments (i.e., violaxanthin, antheraxanthin, and zeaxanthin), as observed in most advanced chlorophytes. The results indicated that N-replete conditions enhance carotenoid biosynthesis, which would correspond to a higher antioxidant capacity measured in Nephroselmis sp. Indeed, peroxyl radical scavenging activity and total carotenoids were higher under N-replete conditions and decreased sharply under N-limitation or starvation conditions. Considering individual carotenoids, siphonaxanthin, neoxanthin, xanthophyll cycle pigments, and lycopene followed the same trend as total carotenoids, while ß-carotene and lutein stayed stable regardless of the nitrogen availability. Carotenoid productivities were also higher under N-replete treatment. The peroxyl radical scavenging activity measured with ORAC assay (63.6 to 154.9 µmol TE g-1 DW) and the lutein content (5.22 to 7.97 mg g-1 DW) were within the upper ranges of values reported previously for other microalgae. Furthermore, contents of siphonaxanthin ere 6 to 20% higher than in previous identified sources (siphonous green algae). These results highlight the potential of Nephroselmis sp. as a source of natural antioxidant and as a pigment of interest.


Assuntos
Antioxidantes/metabolismo , Carotenoides/metabolismo , Clorófitas/metabolismo , Microalgas/metabolismo , Nitrogênio/metabolismo , Antioxidantes/farmacologia , Biomassa , Carotenoides/farmacologia , Clorófitas/crescimento & desenvolvimento , Microalgas/crescimento & desenvolvimento , Capacidade de Absorbância de Radicais de Oxigênio , Fatores de Tempo
13.
Mar Drugs ; 18(2)2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32085557

RESUMO

Twelve microalgae species isolated in tropical lagoons of New Caledonia were screened as a new source of antioxidants. Microalgae were cultivated at two light intensities to investigate their influence on antioxidant capacity. To assess antioxidant property of microalgae extracts, four assays with different modes of action were used: 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azino-bis (3-éthylbenzothiazoline-6-sulphonique) (ABTS), oxygen radical absorbance capacity (ORAC), and thiobabituric acid reactive substances (TBARS). This screening was coupled to pigment analysis to link antioxidant activity and carotenoid content. The results showed that none of the microalgae studied can scavenge DPPH and ABTS radicals, but Chaetoceros sp., Nephroselmis sp., and Nitzschia A sp. have the capacity to scavenge peroxyl radical (ORAC) and Tetraselmis sp., Nitzschia A sp., and Nephroselmis sp. can inhibit lipid peroxidation (TBARS). Carotenoid composition is typical of the studied microalgae and highlight the siphonaxanthin, detected in Nephroselmis sp., as a pigment of interest. It was found that xanthophylls were the major contributors to the peroxyl radical scavenging capacity measured with ORAC assay, but there was no link between carotenoids and inhibition of lipid peroxidation measured with TBARS assay. In addition, the results showed that light intensity has a strong influence on antioxidant capacity of microalgae: Overall, antioxidant activities measured with ORAC assay are better in high light intensity whereas antioxidant activities measured with TBARS assay are better in low light intensity. It suggests that different antioxidant compounds production is related to light intensity.


Assuntos
Antioxidantes/farmacologia , Carotenoides/química , Carotenoides/farmacologia , Microalgas/química , Carotenoides/análise , Peroxidação de Lipídeos/efeitos dos fármacos , Nova Caledônia
14.
Water Res X ; 2: 100023, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31194011

RESUMO

This study presents a new gel based technique to describe the pore water ammonium distribution through the sediment-water interface in two dimensions at a millimeter scale. The technique is an adaptation of the classical colorimetric method based on the Berthelot's reaction. After the thin film of the gel probe was equilibrated by diffusion either in standard solutions or in pore waters, a colorimetric reagent gel was set on the gel probe, allowing development of the characteristic green color. A flatbed scanner and subsequent densitometry image analysis allowed to determine the concentration distribution of ammonium. The gel probe was tested in the laboratory for two media, deionized water and seawater, within the range 0-3000 µM in NH4 +. Detection limit is about 20 µM and accuracy about ±25 µM. The field validation was realized in a tidal mudflat of the French Atlantic coast by comparison with conventional pore water extraction and colorimetric analysis. The large range of concentrations and its applicability in continental and marine sediments suggest a wide range of applications of the technique for a reasonable cost.

15.
FEMS Microbiol Ecol ; 95(5)2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30947330

RESUMO

The aim of this work is to document the complex nutritional strategy developed by kleptoplastic intertidal foraminifera. We study the mixotrophic ability of a common intertidal foraminifer, Elphidium williamsoni, by (i) investigating the phylogenetic identity of the foraminiferal kleptoplasts, (ii) following their oxygenic photosynthetic capacity and (iii) observing the modification in cellular ultrastructural features in response to photoautotrophic conditions. This was achieved by coupling molecular phylogenetic analyses and TEM observations with non-destructive measurements of kleptoplast O2 production over a 15-day experimental study. Results show that the studied E. williamsoni actively selected kleptoplasts mainly from pennate diatoms and had the ability to produce oxygen, up to 13.4 nmol O2 cell-1 d-1, from low to relatively high irradiance over at least 15 days. Ultrastructural features and photophysiological data showed significant differences over time, the number of lipid droplets, residual bodies and the dark respiration increased; whereas, the number of kleptoplasts decreased accompanied by a minor decrease of the photosynthetic rate. These observations suggest that in E. williamsoni kleptoplasts might provide extra carbon storage through lipid droplets synthesis and highlight the complexity of E. williamsoni feeding strategy and the necessity of further dedicated studies regarding mechanisms developed by kleptoplastidic foraminifera for carbon partitioning and storage.


Assuntos
Foraminíferos/metabolismo , Gotículas Lipídicas/metabolismo , Carbono/metabolismo , Diatomáceas/classificação , Diatomáceas/genética , Diatomáceas/metabolismo , Foraminíferos/classificação , Processos Heterotróficos , Oxigênio/metabolismo , Fotossíntese , Filogenia
16.
Environ Microbiol ; 21(1): 125-141, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30277305

RESUMO

The assimilation of inorganic compounds in foraminiferal metabolism compared to predation or organic matter assimilation is unknown. Here, we investigate possible inorganic-compound assimilation in Nonionellina labradorica, a common kleptoplastidic benthic foraminifer from Arctic and North Atlantic sublittoral regions. The objectives were to identify the source of the foraminiferal kleptoplasts, assess their photosynthetic functionality in light and darkness and investigate inorganic nitrogen and sulfate assimilation. We used DNA barcoding of a ~ 830 bp fragment from the SSU rDNA to identify the kleptoplasts and correlated transmission electron microscopy and nanometre-scale secondary ion mass spectrometry (TEM-NanoSIMS) isotopic imaging to study 13 C-bicarbonate, 15 N-ammonium and 34 S-sulfate uptake. In addition, respiration rate measurements were determined to assess the response of N. labradorica to light. The DNA sequences established that over 80% of the kleptoplasts belonged to Thalassiosira (with 96%-99% identity), a cosmopolitan planktonic diatom. TEM-NanoSIMS imaging revealed degraded cytoplasm and an absence of 13 C assimilation in foraminifera exposed to light. Oxygen measurements showed higher respiration rates under light than dark conditions, and no O2 production was detected. These results indicate that the photosynthetic pathways in N. labradorica are not functional. Furthermore, N. labradorica assimilated both 15 N-ammonium and 34 S-sulfate into its cytoplasm, which suggests that foraminifera might have several ammonium or sulfate assimilation pathways, involving either the kleptoplasts or bona fide foraminiferal pathway(s) not yet identified.


Assuntos
Carbono/metabolismo , Ecossistema , Foraminíferos/metabolismo , Nitrogênio/metabolismo , Enxofre/metabolismo , Citoplasma/metabolismo , Foraminíferos/classificação , Foraminíferos/genética , Foraminíferos/efeitos da radiação , Luz , Fotossíntese , Filogenia
17.
Sci Rep ; 8(1): 10140, 2018 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-29973634

RESUMO

Haynesina germanica, an ubiquitous benthic foraminifer in intertidal mudflats, has the remarkable ability to isolate, sequester, and use chloroplasts from microalgae. The photosynthetic functionality of these kleptoplasts has been demonstrated by measuring photosystem II quantum efficiency and O2 production rates, but the precise role of the kleptoplasts in foraminiferal metabolism is poorly understood. Thus, the mechanism and dynamics of C and N assimilation and translocation from the kleptoplasts to the foraminiferal host requires study. The objective of this study was to investigate, using correlated TEM and NanoSIMS imaging, the assimilation of inorganic C and N (here ammonium, NH4+) in individuals of a kleptoplastic benthic foraminiferal species. H. germanica specimens were incubated for 20 h in artificial seawater enriched with H13CO3- and 15NH4+ during a light/dark cycle. All specimens (n = 12) incorporated 13C into their endoplasm stored primarily in the form of lipid droplets. A control incubation in darkness resulted in no 13C-uptake, strongly suggesting that photosynthesis is the process dominating inorganic C assimilation. Ammonium assimilation was observed both with and without light, with diffuse 15N-enrichment throughout the cytoplasm and distinct 15N-hotspots in fibrillar vesicles, electron-opaque bodies, tubulin paracrystals, bacterial associates, and, rarely and at moderate levels, in kleptoplasts. The latter observation might indicate that the kleptoplasts are involved in N assimilation. However, the higher N assimilation observed in the foraminiferal endoplasm incubated without light suggests that another cytoplasmic pathway is dominant, at least in darkness. This study clearly shows the advantage provided by the kleptoplasts as an additional source of carbon and provides observations of ammonium uptake by the foraminiferal cell.


Assuntos
Carbono/metabolismo , Foraminíferos/metabolismo , Nitrogênio/metabolismo , Gotículas Lipídicas/metabolismo , Fotossíntese , Plastídeos/metabolismo
18.
PLoS One ; 12(2): e0172678, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28231315

RESUMO

Some shallow water benthic foraminifera are able to retain functional chloroplasts (kleptoplasts) from their food source, i.e. diatoms. Here we assessed the functionality of the kleptoplast xanthophyll cycle (XC, i.e. the main diatom short-term photo-regulation mechanism) and we surveyed Haynesina germanica kleptoplast pigment composition over time and at different light regimes. Six common diatom lipophilic pigments were detected, two chlorophylls (Chl a, Chl c) and four carotenoids (fucoxanthin and by-products, diadinoxanthin, diatoxanthin and ß-carotene), the same pigment profile as the diatom species frequently isolated at the sampling site. The xanthophyll cycle (XC) was functional with kleptoplast diatoxanthin (DT) content increase with concomitant diadinoxanthin (DD) decrease after short term light exposure. DT/(DT+DD) and DT/DD ratios increased significantly in specimens exposed to low light and high light in comparison to specimens maintained in the dark. Specimens placed in very low light after the light treatments reverted to values close to the initial ones, suggesting that H. germanica XC is functional. A functional XC is an indication of H. germanica kleptoplasts capacity for short-term photo-protection from photo-oxidative damages caused by excess of light. Furthermore, the pigment survey suggests that H. germanica preserved some chloroplasts over a longer time than others and that pigment content is influenced by previous light history. Finally, the current study highlighted seasonal differences, with higher pigment contents in winter specimens (27.35 ± 1.30 ng cell-1) and lower in summer specimens (6.08 ± 1.21 ng cell-1), a quantitative and qualitative composition suggesting light acclimation to low or high light availability, according to the season.


Assuntos
Foraminíferos/metabolismo , Pigmentos Biológicos/metabolismo , Xantofilas/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo
19.
Mar Drugs ; 13(12): 7067-86, 2015 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-26703627

RESUMO

Over the last century, human activities have altered the global nitrogen cycle, and anthropogenic inputs of both inorganic and organic nitrogen species have increased around the world, causing significant changes to the functioning of aquatic ecosystems. The increasing frequency of Pseudo-nitzschia spp. in estuarine and coastal waters reinforces the need to understand better the environmental control of its growth and domoic acid (DA) production. Here, we document Pseudo-nitzschia spp. growth and toxicity on a large set of inorganic and organic nitrogen (nitrate, ammonium, urea, glutamate, glutamine, arginine and taurine). Our study focused on two species isolated from European coastal waters: P. multiseries CCL70 and P. australis PNC1. The nitrogen sources induced broad differences between the two species with respect to growth rate, biomass and cellular DA, but no specific variation could be attributed to any of the inorganic or organic nitrogen substrates. Enrichment with ammonium resulted in an enhanced growth rate and cell yield, whereas glutamate did not support the growth of P. multiseries. Arginine, glutamine and taurine enabled good growth of P. australis, but without toxin production. The highest DA content was produced when P. multiseries grew with urea and P. australis grew with glutamate. For both species, growth rate was not correlated with DA content but more toxin was produced when the nitrogen source could not sustain a high biomass. A significant negative correlation was found between cell biomass and DA content in P. australis. This study shows that Pseudo-nitzschia can readily utilize organic nitrogen in the form of amino acids, and confirms that both inorganic and organic nitrogen affect growth and DA production. Our results contribute to our understanding of the ecophysiology of Pseudo-nitzschia spp. and may help to predict toxic events in the natural environment.


Assuntos
Diatomáceas/metabolismo , Ácido Caínico/análogos & derivados , Toxinas Marinhas/metabolismo , Nitrogênio/metabolismo , Aminoácidos/química , Aminoácidos/metabolismo , Técnicas de Cultura , Europa (Continente) , Ácido Caínico/metabolismo , Nitrogênio/química , Especificidade da Espécie
20.
J Nat Prod ; 77(11): 2465-74, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25356854

RESUMO

We identified three new azaspiracids (AZAs) with molecular weights of 715, 815, and 829 (AZA33 (3), AZA34 (4), and AZA35, respectively) in mussels, seawater, and Azadinium spinosum culture. Approximately 700 µg of 3 and 250 µg of 4 were isolated from a bulk culture of A. spinosum, and their structures determined by MS and NMR spectroscopy. These compounds differ significantly at the carboxyl end of the molecule from known AZA analogues and therefore provide valuable information on structure-activity relationships. Initial toxicological assessment was performed using an in vitro model system based on Jurkat T lymphocyte cytotoxicity, and the potencies of 3 and 4 were found to be 0.22- and 5.5-fold that of AZA1 (1), respectively. Thus, major changes in the carboxyl end of 1 resulted in significant changes in toxicity. In mussel extracts, 3 was detected at low levels, whereas 4 and AZA35 were detected only at extremely low levels or not at all. The structures of 3 and 4 are consistent with AZAs being biosynthetically assembled from the amino end.


Assuntos
Dinoflagelados/química , Células Jurkat/efeitos dos fármacos , Toxinas Marinhas/isolamento & purificação , Toxinas Marinhas/farmacologia , Compostos de Espiro/isolamento & purificação , Compostos de Espiro/farmacologia , Humanos , Toxinas Marinhas/química , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Compostos de Espiro/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...